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SUMMARY

We present two methods for efficiently sampling the response (trajectory space) of multibody systems
operating under spatial uncertainty, when the latter is assumed to be representable with Gaussian processes.
In this case, the dynamics (time evolution) of the multibody systems depends on spatially indexed uncertain
parameters that span infinite-dimensional spaces. This places a heavy computational burden on existing
methodologies, an issue addressed herein with two new conditional sampling approaches. When a single
instance of the uncertainty is needed in the entire domain, we use a fast Fourier transform technique.
When the initial conditions are fixed and the path distribution of the dynamical system is relatively
narrow, we use an incremental sampling approach that is fast and has a small memory footprint. Both
methods produce the same distributions as the widely used Cholesky-based approaches. We illustrate this
convergence at a smaller computational effort and memory cost for a simple non-linear vehicle model.
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1. INTRODUCTION

Uncertainty quantification is relevant in a broad spectrum of science and engineering problems.
It has been studied for decades with a wide compass of methods and techniques that are gradu-
ally improving in accuracy, efficiency, and robustness. This paper focuses on the efficiency and
robustness attributes of algorithms used to investigate the dynamics of multibody system operating
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under spatial uncertainty. The equations that govern the time evolution of a multibody system can
be expressed in the form (see, for instance, [1])

q̇ = L(q)v

M(q)v̇ = fA(t,q,v)
(1)

where q=[rT1 ,!T1 , . . . ,rTnb ,!
T
nb ]T∈R6nb are generalized positions, v=[ṙT1 , "̄T

1 , . . . , ṙTnb , "̄
T
nb ]T∈R6nb

are generalized velocities, and nb represents the number of bodies in the system. The matrix
M(q) is the generalized mass matrix, and fA(t,q,v) represents the vector of generalized applied
forces. Often times, additional non-linear algebraic constraints U(t,q)=0 must be satisfied by the
generalized coordinates q leading to a set of differential algebraic equations (see, for instance,
[2]). For each body i , its orientation is then described by a set of three Euler angles, !i ∈R3,
following the 3–1–3 local rotation sequence (see, for instance, [1]). The rate at which each body
changes its orientation is captured by the local angular velocity "̄i ∈R3. The location of each body
is uniquely determined by a position vector ri =[xi , yi , zi ]T that specifies where the body-fixed
centroidal reference frame is located. The translational velocity of the body is simply ṙi , where
an overdot represents time differentiation. Since for each body i there is a locally nonsingular
matrix B(!i ) such that "̄i =B(!i )!̇i , the operator L(q) that relates the time derivative of the level-
zero generalized coordinates to the level-one generalized coordinates is generally not the identity
matrix. Although many sets of generalized coordinates can be used to capture the dynamics of
a multibody system, note that the equations of motion in (1) draw on the so-called absolute, or
Cartesian, representation of the attitude of each rigid body in the system. Also note that for brevity,
this summary of the multibody dynamics problem focused on the rigid body case. Equation (1)
also captures the dynamics associated with multibody systems comprising flexible bodies, with the
caveat that the set of generalized coordinates is richer to capture the deformation modes associated
with each flexible body (see, for instance, [3]).

Ground and air vehicles are two of the most common examples of systems leading to a multibody
dynamics problem. For instance, the uncertainty in the response of a ground vehicle might stem
from a friction coefficient that is insufficiently known at the tire/road interface, or might be the
result of uncertainty in the road profile (elevation). In other words, the uncertainty permeates the
equations of motion through the force term fA(t,q,v). The force fA depends on the location q,
and at this location uncertainty enters the problems through an uncertain friction coefficient, road
profile, etc.

In an abstract framework, we are interested in characterizing the spatial uncertainty effects on
a dynamical system

ẋ= f (x, t,#(x)) (2)

subject to a given set of initial conditions. Note that an initial value problem that draws on (1) can
always be recast as in (2). The function f (x, t,u) is the intrinsic function that dictates the dynamics
of the system; it is a known function obtained as the outcome of a mathematical modeling stage
that is not of interest here. The quantity #(x) is a stationary random variable indexed by the space
variable x . The following problem is of interest:

Characterize the distribution of the trajectory (random variable) x(t) at

a given time t or for a collection of times t1<t2< · · ·<tN
(3)
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EFFICIENT SAMPLING OF SPATIAL UNCERTAINTY 539

If (2) represents the equations of motion of a vehicle, #(x) can be the uncertain road elevation
or friction coefficient. The same formalism can be applied to differential algebraic equations with
virtually no change. For simplicity, the presentation is restricted to the case of ordinary differential
equation (2), which in a stochastic framework is more rigorously reformulated as

ẋ= f (x, t,#(x,")) (4)

where " is an element of the event space !. The solution of (4) leads to a trajectory x(t,"),
which is thus a random variable. An example of a quantity of interest is E"[x(T,")], the expected
state at a time T . The key to efficiently solving the stated problem is to sample #(x,") efficiently,
that is, produce a sample function #(x,"1) for a given event "1∈! and for any x . To simplify
the notation, we state merely that #(x) and x(t) are random variables, and we do not explicitly
denote their dependence on ". Note that (2) is not a stochastic differential equation; rather, it is
an ordinary differential equation with state-dependent uncertain parameters.

An overview of uncertainty quantification methods commonly used can be found in [4]. Probably
the most widespread technique draws on random sampling methods, such as Monte Carlo and
Latin hypercube sampling [5, 6]. Reliability methods can be computationally less intensive than
sampling methods [7]. Their increased efficiency is the result of the fact that the entire surface
response is updated by any given sample information. This update can be carried out by mean
value [7], global Gaussian process [8, 9], and other approaches [10]. Polynomial chaos expansion
(PCE) methods construct a polynomial surface response approximation [11–13]. They use either a
non-linear projection Galerkin method [11] or a collocation approach [13] to obtain the polynomial
approximation. PCE methods have generally been impaired, however, by a relatively low dimension
of the uncertainty space that they can span [13]. The other methods are in principle applicable
independent of dimension. Nonetheless, their efficiency tends to degrade with the increasing
dimension of uncertainty spaces if one uses the implementations presented in the above references.

Kriging and its variations, co-kriging and kriging with regression, are example of the developing
nature of spatial uncertainty [14–16]. These ‘hybrid methods’ were introduced to address accuracy
and robustness concerns, capable of extending to less-structured data (i.e. nonstationary, non-
homogeneous). However, the methods require the solution of small kriging systems at each sample
point or the solution of a large system, using global dual kriging simulation. These methods are
suitable for data interpolation of small sample sets from large data sets but cannot be extrapolated
without encountering significant computational effort. Gaussian processes, as presented in [17]
and applied in [18], provide an accurate and versatile methodology for interpolating spatial data.
Unfortunately, the Gaussian processes framework traditionally suffers from numerical instability
and excessive storage requirements because of the matrix operations it employs.

Some traditional methods for spatial uncertainty calculations, such as white-noise methods and
spectral methods, fare much better than kriging with respect to runtime yet suffer from accuracy
and robustness issues. Examples of the former, based on homogeneous random processes, are
explained in [19, 20]. While these methods model a large class of problems and may be useful
in design and simulation, they are nonetheless not appropriate for situations where the spatial
variation has large areas of coherence that are inhomogeneous, a common occurrence in real-life
applications. Another original approach is discussed in [21], where the use of traditional spectral
methods is supplemented with covariance spectrum phase values conditioned from data. However,
the methodology is plagued by accuracy limitations typically associated with spectral methods.
The accuracy of these methods is dependent on the number of harmonics used and can quickly
become hard to implement and manage. Likewise, spectral techniques cannot easily accommodate
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rapid variations in the properties of the surface, which is a well-known side effect of the Gibbs
phenomenon, thus presenting robustness concerns.

Growing problem complexity and solution resolution have led to creative approaches for condi-
tioned problems, that is, solution methods that gain efficiency in lieu of robustness, and sometimes
accuracy. These methods still provide informative results that can be used in industry applications.
One common approach is regimenting the data space to a lattice and sampling from the prior
alone. In this case, the samples are not conditioned on the local deviation from the prior model.
The benefit of this simplification is that the covariance matrix is Toeplitz and can be sampled from
by leveraging fast Fourier transforms (FFT) [22]. Another perspective gaining wider acceptance is
the sparse-grid assumption introduced by Stein [14]. Stein leverages compact support kernels to
limit the training data set size required for statistically accurate and consistent interpolation. This
is especially useful in conjunction with high-frequency data sets, where correlation decays rapidly
to nearly zero. Stein, however, does not couple sparse-grid theory with conditional sampling to
allow for truly dynamic interpolation, as we do in Section 4.

The first method proposed herein, periodic fold sampling (PFS), imposes one condition and one
assumption in order to conduct the entire Gaussian process-based methodology in a matrix-free
fashion. The condition is that the data are provided on a lattice. The assumption is that the space
is periodic, which is reflected in the autocorrelation function. This assumption was tried and found
to introduce few problems away from boundaries when working on large grid spaces. We present
the specifics of each PFS step conducted in the frequency domain: data organization and data
augmentation, estimation of hyperparameters, computation of posterior distribution characteristics,
and multivariate Gaussian sampling. We explain how FFTs are used to map between the time and
frequency domains. We note that FFT approaches have been used to sample from prior distributions
[23] but not, as far as we know, from the posterior distribution. We show in conjunction with PFS
the convergence of the resulting sample mean and covariance to the respective values computed
with traditional Gaussian processes, as in [18].

The second method proposed, the incremental Gaussian process approach (IGPA), works on
subdomains to localize the data interpolation. Data do not need to be interpolated all at once on
the entire problem space but rather can be interpolated incrementally only in the proximity of
the region of importance. In this approach the computational effort is invariant to problem size.
For IGPA, we describe the incremental approach justification in detail, including a discussion of
the implementation process, formal proofs, and numerical results.

1.1. Application example

To illustrate the performance of the proposed methods, they will be used to quantify the uncertainty
in the behavior of a simple vehicle model running over a flat road that has a given distribution of
the tire/road friction coefficient at a set of learning points provided on a two-dimensional grid.
The specifics of this simulation are detailed in [18], but the essentials are discussed here. First, a
model for the friction coefficient distribution is required; studies in geostatistics suggest that the
squared exponential is a representative correlation function for Gaussian random processes [23]
that is suitable to be used. In order to address the natural bounds of ice (between dry friction $d
and ice friction $s), a phase parameter % is used:

%=− ln
(

$d−$
$−$s

)
∈(−∞,∞) (5)
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Figure 1. Bicycle model used in numerical validation [24].

Note that the phase parameter is an infinite-dimensional random variable indexed by a spatial
variable. Next, given a set of points x1, x2, . . . , xM in space, denote by %1,%2, . . . ,%M the random
variables that represent the phase parameters at those locations. Modeling the phase parameter as
a Gaussian process means that the vector "=(%1,%2, . . . ,%M ) has both a prior and a posterior
multivariate normal distribution. The posterior distribution can be determined from well-established
statistical considerations applicable for any multivariate normal distribution. The key attribute of
Gaussian random processes is that the prior distribution can be generated from a bivariate function,
the covariance function, and a univariate function, the mean function. Herein we consider an
exponential covariance function with hyperparameters &2={',(x1,(x2}, and a linear mean function
with hyperparameters &1={a0,a1,a2} [17]:

m(x;&1) = a0+a1x1+a2x2 (6)

k(x, x ′;&2) = exp

(

−
[
(x1−x ′

1)

(x1

]2/'
−

[
(x2−x ′

2)

(x2

]2/')

(7)

The vehicle model used, shown in Figure 1, has an open-loop steering system set to execute a
constant radius turn without any axial forces applied. The model has three degrees of freedom:
those associated with the longitudinal motion Vx , lateral motion Vy , and yaw !z . Three input
functions determine the behavior of the model: steer angle )f and the front and rear wheel road
adhesion coefficients $f and $r, respectively. The governing equations are as follows:

m(V̇x −Vy!z) = −Fyf sin)f

m(V̇y+Vx!z) = Fyr+Fyf cos)f

Iz!̇z = l1Fyf cos)f−l2Fyr

Ẋ = Vx cos#z−Vy sin#z

Ẏ = Vx sin#z+Vy cos#z

#̇z = !z

(8)
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The constitutive equations for the forces acting on the tires, Fyr and Fyf, are of form
F=*(x,df,%,+) where x=(X,Y,#z,Vx ,Vy,!z),df is the steering angle input, % is the uncertain
parameter in this study and + contains tire/vehicle material and geometry parameters [24]. Note
that after dividing with the inertial terms m, I and solving for V̇x , V̇y , and !̇z in (8) the problem
is cast in the standard form defined by (2). The function f is determined from the function *
above that defines the tire forces F . The stochastic parameter # in (2) represents the friction phase
parameter %.

2. GAUSSIAN PROCESS DESCRIPTION OF SPATIAL UNCERTAINTY

Gaussian processes represent a versatile approach for simulating infinite-dimensional uncertainty.
By definition, a spatially distributed random variable #(x) is a Gaussian process with mean function
m(x;&1) and correlation function k(x, x ′;&2) if, for any set of space points X ={x1, x2, . . . , xM }

#(X)=





#(x1)

#(x2)

...

#(xM )




∼N(m(X;&1),K (X, X;&2)) (9)

For m∈RM and K ∈RM×M ,N(m,K ) in (9) is the M-variate normal distribution with mean m
and variance K , with

m(X;&1)=





m(x1,&1)

m(x2,&1)

...

m(xM ,&1)




, K (X, X ′;&2)=





k(x1, x ′
1;&2) k(x1, x ′

2;&2) · · · k(x1, x ′
N ;&2)

k(x2, x ′
1;&2) k(x2, x ′

2;&2) · · · k(x2, x ′
N ;&2)

...
...

...
...

k(xM , x ′
1;&2) k(xM , x ′

2;&2) · · · k(xM , x ′
N ;&2)





where X ′ ={x ′
1, x

′
2, . . . , x

′
N }, and &1 and &2 are the hyperparameters of the mean and covariance

functions.
As in Reference [17], we employ a Bayesian point of view in dealing with uncertainty. The

hyperparameters &1 and &2 are obtained from a data set #(D) at nodes D={d1,d2, . . . ,dM }. The
posterior distribution of the variable #(S) at node points S={S1, S2, . . . , SN }, consistent with #(D),
is N( f ∗,K ∗) [17], where

f ∗ = K (S,D;&2)[K (D,D;&2)+,2N IM ]−1(#(D)−m(D;&1))+m(S;&1) (10)

K ∗ = K (S, S;&2)−K (S,D;&2)[K (D,D;&2)+,2N IM ]−1K (D, S;&2) (11)

Here IM represents the identity matrix of dimension M , and we have included the modification to
the posterior distribution that is brought about by the noise in the data with variance ,2N .

The key issues in simulating from this posterior model are (a) how to obtain the hyperparameters
from data and (b) how to sample from N( f ∗,K ∗), especially in the case where M is very large.
The classical approach is to do a Cholesky factorization of K ∗, a costly order O(M3) operation.
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To simplify the notation, we will use the same symbols for a vector of random variables as
for the vector of locations to which these variables are attached: for example, #(D)→D, and
#(S)→ S, the use of which will become clear from the context. In addition, we will not explicitly
represent the dependence of m(·) and k(·, ·) on the hyperparameters &.

2.1. Hyperparameter estimation

Before training the posterior and sampling from it, the hyperparameters must be estimated to
evaluate the prior. A commonly used method for the estimation of the hyperparameters from data is
maximum likelihood estimation [17]. The method relies on the maximization of the log-likelihood
function. In the multivariate Gaussian with mean m(&) and covariance matrix K (&) case, the
log-likelihood function assumes the form

log p(y|&)=−1
2
WTK (&)−1W − 1

2
log |K (&)|− M

2
log2- (12)

where W = y−m(&) and y is the observed data. Here |A| denotes the determinant of a matrix A.
In the case of spatial uncertainty, the dependence on the hyperparameters & appears by means of
the spatial coordinates x .

In the example in Section 1.1, we have that &={&1,&2,,n}. The gradients of the likelihood
function can be computed analytically [17]:

!
!&1 j

log p(y|&) = 1
2
tr

(
(K (&)−1W (K (&)−1W )T−K (&)−1)

!K (&)

!&1 j

)
(13a)

!
!&2 j

log p(y|&) = −
(

!
!&2 j

m(&)

)T

K (&)−1W (13b)

!
!,n

log p(y|&) = 1
2
,ntr(K (&)−1W (K (&)−1W )T−K (&)−1) (13c)

Here, tr(A) denotes the trace of a square matrix A, the sum of its diagonal entries.
It can be proven that the gradient of K (&) with respect to any hyperparameter maintains a

periodic matrix structure. This fact suggests that all evaluation inside the trace operator can be
done in the frequency domain after K and !K/!&1 j are diagonalized with FFT. Nonetheless, since
the conditional sampling part of our procedure is far more time consuming, we use the FFT-based
direct diagonalization only for its matrices.

To determine the hyperparameters, we use the MATLAB fsolve function. This function imple-
ments a quasi-Newton approach for non-linear equations. We apply it to the non-linear equations
(13) obtained from the optimality conditions of maximizing the likelihood function. Using an
optimization approach instead would have resulted in the need to compute the objective function
at multiple points. This involves the evaluation of the determinant |K (&)|, which is currently not
known to be possible in a matrix-free setting. Note that (13) can be evaluated in matrix-free
fashion by using conjugate gradient techniques for linear systems that are equivalent to the appli-
cation of K−1 by using an FFT approach. Although a matrix-free approach for MLE has not been
implemented in this paper, this is a major roadblock for using optimization approaches for large
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problems of the type we intend to solve in the future. We have thus decided to carry out the MLE
procedure by a non-linear equations approach in order to test its feasibility.

2.2. Conditional probability decomposition

The two methodologies presented in this paper hinge on conditional sampling with Gaussian
processes; that is, both data and previous samples are used when training new data sets. In statistical
notation, this is captured by the following condition:

P(S1, S2|D)=P(S2|S1,D)∗P(S1|D) (14)

where D is the observed data space, S1 is the data space for the first iteration, and S2 is the
data space for the second iteration. The motivation behind this ‘divide and conquer’ approach
is two-fold. First, the aggregate of all conditional simulations is sometimes more efficient to
carry out than one comprehensive simulation. Second, the memory requirements of a successive
conditioning approach can be much reduced compared with the all-at-once approach. Note that
the conditioning procedure can be applied recursively to result in as small a dimension of the
variable to be sampled as needed, provided that the parameters of the conditional distribution can
be efficiently determined.

Equality (14) can be expressed with probability densities by using the multivariate Gaussian
distribution joint probability density function [17]:

p

((
S1

S2

)

|m1,$1

)

= p(S2|m2,$2)∗ p(S1|m3,$3) (15)

p(x |m,$) = (2∗-)−n/2|$|−1/2 exp(− 1
2 (x−m)T$−1(x−m)) (16)

where x ∈Rn . The aggregate covariance matrix $1 and the conditional covariance matrices $2 and
$3 are defined in Equation (A3) of the Appendix. This result will be taken advantage of in PFS
and IGPA.

3. A SPECTRAL APPROACH: PFS

The question that motivates PFS is as follows: How can one conduct high-fidelity interpolation
and avoid the bottleneck of large matrix storage and computation without compromising accuracy
and robustness? A satisfactory answer is produced if two assumptions regarding (a) the spatial
distribution of the training input data and (b) input data periodicity are made. Sampling can then
be carried out efficiently following a regimented strategy called folding.

In terms of (a) above, PFS is applied strictly to learning data initially provided on a lattice. This
assumption certainly reduces the applicability of the methodology. Still, countless applications
exist where data are compiled this way. Small-scale data collection in custom lab experiments,
for instance, is one area where lattice data collection is readily achievable. Another important
application of PFS is in satellite-collected data because the range of satellites makes their data
collection flexible and adaptive. Note that although the paper focuses on the two-dimensional
methodology, little alteration is required to extend the methodology to higher dimensional spaces.
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Assumption (b) above reflects in the expression of the covariance function. Unlike in (7), the
covariance function is selected to be periodic:

kp(x, x∗)=






l∏
s=1

exp

(

−
[ |xs−x∗

s |
(s

]2/')

, |xs−x∗
s |<Ls/2

l∏
s=1

exp

(

−
[
Ls−|xs−x∗

s |
(s

]2/')

, |xs−x∗
s |>Ls/2

(17)

where l is the number of dimensions, x is a point in the first data set, x∗ is a point in the second data
set, Ls is the dimension respective domain length, and (s is the dimension respective characteristic
length-scale. Because this class of periodic matrices is an algebra, the periodic assumption ensures
that the Gaussian processes-computed posterior covariance matrix in (11) will also be periodic.
This periodic nature will allow us to diagonalize the matrix with FFT. It should be pointed out,
however, that any Gaussian process can be approached in a periodic framework on a domain that
is extended twice in each direction [22]. The approach proposed and based on (17) does not need
a larger domain, but runs the risk of resulting in nonpositive-definite covariance matrices for fine
grids [14]. We have not run into this scenario for any of the grid sizes that we have considered. In
the end, the salient feature of PFS is that it can be applied in both cases; i.e. when condition (b)
really holds, or when one forces this assumption and accepts the risk of corrupting the accuracy
of the results, a risk that decreases exponentially fast away from the domain boundary.

The periodic assumption has been used in a broad range of research and application fields to
achieve significant efficiency gains. The aspect that adversely impacts this approach is the Gibbs
phenomenon: the correlative misrepresentation of sample points near the boundary, especially those
within two characteristic length-scales of the boundary. Points near the boundary are predicted to
have large correlation with boundary points on opposite sides of the space, which is certainly false
unless the space is innately periodic (spherical or cylindrical, for instance). In natural distributions,
this drawback is critical only if the inspected space is on the order of the characteristic length-
scale, which is rarely the case. In this situation, less sophisticated regression methods can be used
to predict data. It is important to note the erroneous nature of our method near the boundaries,
however, so that information is drawn only from accurate samples and simulations are conducted
away from the boundaries.

The regimented sampling strategy required by PFS, introduced above as folding, is done iter-
atively. Each iteration folds or shifts the sample points from the existing data points by half a
resolution length; thus, each iteration doubles the sampled space. Subsequent iterations then use
the previously interpolated data to learn from. This strategy is illustrated in Figure 2. Figure 3
shows in detail the direction and magnitude of each consecutive shift; each time the direction
of shift is rotated by −-/2, and the shift magnitude is reduced 50%. The conditional nature of
sampling was discussed in detail in Section 2.2. The fold method of sampling ensures that the K12
covariance matrix will be square and FFT diagonalizable as proven and leveraged in Section 3.1.

Figure 2. Pictorial representation of first two iterations of PFS.
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Figure 3. Direction and magnitude of the iterative shift.

Formally, a series of increasing grids of data, %D,%1,%2, . . . ,%n , is considered. The data vector
D is provided on %D , and obtaining sample vectors S1 on %1, S2 on %2, . . . , Sn on %n becomes the
problem of interest. The approach proposed relies on an iterative use of the conditional probability
density formula (14):

p(S1, S2, . . . , Sn|D)=
n∏

i=1
p(Si |D, S1, S2, . . . , Si−1) (18)

Owing to the spiral-like spatial dependence described in Figure 3, a Markov-chain-like simplifi-
cation of p((Si |D, S1, S2, . . . , Si−1)) to p((Si |D, Si−1)) or other variants is generally not possible,
except for very particular cases of processes, such as the white-noise process. The product rule
allows for incremental sampling. Starting from D, sampling occurs for sets Si of increasing index
i conditionally on the preceding sample values. A key observation is that, for Gaussian processes,
the conditional distribution is algebraically easy to obtain based on Equation (A3) in the Appendix.

We note that

dim(Si )=dim(D)+
i−1∑
j=1

dim(S j ), i=1,2, . . . ,n (19)

which results in the vectors to the left and right of the conditional symbol having the same size.
Consequently, a conditional sample can be easily calculated by using FFT techniques. It is quite
possible that the FFT approach can work in some form even when (19) does not hold, but this
remains to be investigated. Finally, note that this sampling approach is not suitable for computing
realizations at ad hoc locations because only coordinates (N1sx/2n,N2sy/2n) are interpolated,
where n is the number of fold iterations, sx and sy are the respective dimension observed data
resolutions, and N1 and N2 are positive integers.

3.1. Matrix-free computation of posterior distribution characteristics

Designing an efficient method for sampling the conditional distribution p(Si |D, S1, S2, . . . , Si−1)
requires an effective recursive conditioning method in (18), which becomes the objective of this
section. Herein, subscript 1 refers to the coordinates of the observed and simulated data set,
%1={D, S1, S2, . . . , Si−1}, and subscript 2 refers to the half-resolution shift of those coordinates,
%2= Si . With this block notation, the prior distribution is

(%1,%2)∼ p(D, S1, S2, . . . , Si )∼N

((
m1

m2

)
,

[
K11 K12

K21 KW

])

Reference [17] presents a time-domain framework for computing the Gaussian posterior distri-
bution characteristics from the observed data y incorporating measurement noise ,n , using the
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prior mean, (6), and the prior covariance matrix, (7). This results in p(%2|%1)∼N( f ∗,K ∗), where

f ∗ =m2+K21K−1
W (y−m1)∈RN (20a)

KW = K11+,2n ID ∈RM×M (20b)

K ∗ = K22−K21K
−1
W K12∈RN×N (20c)

Here M is the number of observed and currently simulated data and N is the dimension of data
vector to be sampled. Note that, in this notation, ID is the identity operator when reduced to
the D subblock of %1, and it is 0 otherwise; it is not the identity matrix of dimension M . The
matrix blocks are obtained from the covariance function as K11=k(%1,%1),K12=k(%1,%2), and
K22=k(%2,%2). Note that (20) is a condensed version of (10) and (11), where the subscripts
qualify which variate is on which covariance matrix axis.

The operations involved above, matrix inverses and matrix products, lead to excessive runtimes.
Furthermore, storage capabilities begin to falter when the number of sample points N is in the
neighborhood of 104 because of the N 2 entries in the covariance matrices.

Our method emulates the framework outlined above, maintaining its robustness and accuracy,
but draws on two assumptions introduced in Section 3 to conduct all expensive operations in the
frequency domain. It is based on the key observation that all covariance matrices, K11,K12, and
K22 (herein called the shift covariance matrix), are FFT diagonalizable; that is, Ka =Q∗Da ∗Q′,
where Da is a diagonal matrix and a is one of the pairs 11, 12, 22, and W . Q is a unitary matrix
such that Q=F(IN ), whereF is FFT over the space bearing the uncertainty. In a two-dimensional
space, FFT is defined as (using the array indexing from 0)

{xlq} F→{x̂lfqf}, x̂lfqf!
1
N 2

(
N−1∑
l,q=0

xlqe−i( 2-N llf+ 2-
N qqf)

)

∀lf,qf=0,1, . . . ,N−1 (21)

In the following, we denote by D the set of either data grid points or data random variables and by
Da a diagonal matrix identified by its subscript a. Note that N need not be the same in both the
l and q variable, but the proofs are carried out under this assumption for algebraic convenience.

The matrices K11,K12, and K22 are periodic matrices. If the spatial dimension is one, they are
circulant matrices. In two dimensions, they satisfy the following property, described by a generic
matrix K , indexed by the grid index pairs

Klq,l ′q ′ =u((l−l ′)modN , (q−q ′)modN ), l, l ′,q,q ′ =0,1, . . . ,N−1 (22)

Here u is a function defined on {0,1, . . . ,N−1}×{0,1, . . . ,N−1}. In particular, for l,
q=0,1, . . . ,N−1,K11,K12, and K22 satisfy (22) for

u11(l,q)=u22(l,q)=k
(
l Lx

N
,
qLy

N

)
, u12(l,q)=k

(
(l+0.5)Lx

N
,
qLy

N

)

Recall that we take the covariance function k to be periodic over a rectangle of dimension Lx ×Ly .
We consider only an x-shift, but the y-shift conclusions follow as well by the ensuing argument.
The matrix KW can also be represented as in (22) using

uW (l,q)=u11(l,q)+,2n)((l)modND, (q)modND), l,q=0,1, . . . ,N−1

where )(l,q)=1 if l=0,q=0, and it is 0 otherwise.
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It remains to prove that matrices with the structure described by (22) can be diagonalized by FFT.
While this result is straightforward for covariance matrices such as K11 and K22 [23], we are not
aware of a similar proof in the Gaussian process literature based on the representation (22). The
latter is central to PFS since it shows that K12 is also diagonalizable by FFT.

The proof proceeds by considering next the FFT basis vectors; i.e. the FFT of the columns of
the identity matrix. They are, up to a scaling parameter,

V lf,qf ={vlfqfl,q }l,q , v
lfqf
l,q =e−i( 2-N llf+ 2-

N qqf) ∀l, lf,q,qf=0,1, . . . ,N−1

Here the variables l,q index the entries in the FFT basis vector, whereas lf,qf index the vectors
themselves. We then have that

[KV lfqf]lq =
N−1∑

l ′,q ′=0
Klq,l ′q ′v

lfqf
l ′q ′

(22)=
N−1∑

l ′,q ′=0
u((l−l ′)modN , (q−q ′)modN ),e−i( 2-N l ′lf+ 2-

N q ′qf)

= e−i( 2-N llf+ 2-
N qqf)

N−1∑

l ′,q ′=0
u((l−l ′)modN , (q−q ′)modN )e−i( 2-N (l−l ′)lf+ 2-

N (q−q ′)qf)

= e−i( 2-N llf+ 2-
N qqf)*(lf,qf)=*(lf,qf)v

lfqf
l,q

for all lf,qf, l,q=0,1, . . . ,N−1. Here,

*(lf,qf)=
N−1∑
l,q=0

u(l,q)e−i( 2-N llf+ 2-
N qqf) (23)

Therefore,

KV lfqf =*(lf,qf)V lfqf ∀lf,qf=0,1, . . . ,N−1

This shows that the matrix K is indeed diagonalizable by the FFT basis vectors and that *(lf,qf)
are its eigenvalues and, thus, its diagonal entries in that basis. Note that the diagonal elements
will be real for K11 and K22 because of their symmetry but they will likely be complex for K12
because of the Lx/2N shift.

At this point, a framework for direct diagonalization follows easily. The elements of the FFT
diagonal of the covariance matrix, Da , where a is either 12/22/W , can be generated directly by
using (23), as opposed to constructing Q first. This direct diagonalization is necessary because
the generation of the unitary matrix Q and the computation of the product Q′KQ represents
a substantial bottleneck for large values of N . The subscript notation used for the time-domain
covariance matrices is recycled for the directly diagonalized matrices D22,DW , and D12. With
this, all of the expensive operations in (20a) can be conducted in the frequency domain after direct
diagonalization with (23). The adjustment to the posterior mean f̂ is computed in the frequency
domain and then mapped back to the time domain with a two-dimensional inverse FFT and added
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to the posterior mean:

f ∗ = m2+ f̂ ∈RN

f̂ = F−1(D21D−1
W Ŵ )∈RN

DW = D11+,2n IM ∈RN×N

(24)

where Ŵ =F(y−m(x)).
The FFT diagonal of the covariance matrix can be used for sampling and thus does not have

to be mapped into the time domain. This fact has significant efficiency implications because large
matrix products and inverses in posterior computation are avoided. Likewise, there is no need for
taking large matrix square roots when sampling from N( f ∗,K ∗) (20):

D∗ =D22−D∗
21D

−1
W D12∈RN×N (25)

3.2. Matrix-free multivariate Gaussian sampling

Sampling from a multivariate Gaussian distribution matrix such asN( f ∗,K ∗) is a mathematically
simple but computationally expensive operation as it requires a large matrix square root of K ∗.
In the time domain, a Cholesky decomposition of the covariance matrix is taken, and the upper
triangular matrix L1/2 is multiplied by a vector of standard normals u. This procedure brings in
the O(N 3) computational effort for kernels that are not compactly supported.

The posterior distribution sampling can be done more efficiently in the frequency domain by
first creating ũ=F(u) where u∼N(0N , IN ) and simulating

S∗ = f ∗+ f̂ ∗ ∈RN

f̂ ∗ = F−1((D∗)1/2ũ)∈RN
(26)

The Cholesky decomposition is avoided entirely, leading to substantial efficiency gains, especially
when Monte Carlo simulation is employed to compute trends and errors in dynamic simulations.
Numerical results reported in Section 5 demonstrate the accuracy of the proposed approach. Since
this methodology is based entirely on FFT operations, it has a theoretical computational effort bound
of O(N logN ), compared with the O(N 3) bound of the conventional Cholesky-based approaches.

4. INCREMENTAL GAUSSIAN PROCESS APPROACH

The conditional sampling methodology discussed in the Appendix, in combination with (18),
allows for an approach where small grid spaces (subspaces) are interpolated dynamically at runtime
throughout a simulation. This can replace the all-at-once (or everywhere) sampling at pre-simulation
stage, allowing for constant computational effort regardless of problem size.

To simplify the discussion, it is assumed that the interest is in the distribution of states associated
with the multibody system at equally spaced time intervals; i.e. the probability density function
of the states x1(&t), x1(2&t), . . . , x1(n&t) (x1 is used in this section to denote the state of the
dynamical system to avoid confusion with the spatial variable x used in the Gaussian process
description). The initial configuration x0 is given, and the uncertain interaction of the system with
the environment is captured by # in (2). The latter quantity has a Gaussian process prior distribution
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(9) and its simulation must be conditioned on measured data D at a small number of sites. Using
the conditional probability rule (18) yields

p(x1(&t), x1(2&t), . . . , x1(n&t)|x0,#)

=
n∏

i=1
p(x1(i&t)|x1((i−1)&t), x1((i−2)&t), . . . , x1(&t), x0,#)

Given the functional random variable # and x1((i−1)&t), x1(i&t) can be evaluated by integrating
the differential equation (2) for one time step &t . This leads to a Markov-chain behavior where
the conditional distribution depends only on the previous state, that is,

p(x1(i&t)|x1((i−1)&t), x1((i−2)&t), . . . , x1(&t), x0,#)= p(x1(i&t)|x1((i−1)&t),#)

Therefore, the following holds:

p(x1(&t), x1(2&t), . . . , x1(n&t)|x0,#)=
n∏

i=1
p(x1(i&t)|x1((i−1)&t),#)

Assume that the function f defining the time derivative of x1 in (2) is bounded in norm by FB . Then,
over the interval [(i−1)&t, i&t] the dynamic system will stay in the ballB(x1((i−1)&t),FB) with
probability 1; here B(a,r) denotes the ball of radius r centered at a. This implies that only values
of # inside B(x1((i−1)&t),FB) are needed for computing p(x1(i&t)|x1((i−1)&t),#). Therefore,

p(x1(&t), x1(2&t), . . . , x1(n&t)|x0,#)

=
n∏

i=1
p(x1(i&t)|x1((i−1)&t), {#(x)|x ∈B(x1(i−1)&t,FB)}) (27)

This suggests the following strategy for sampling from the distribution of x1(&t), x1(2&t), . . . , x1
(n&t) conditional on # and x0. For each i=1,2, . . . ,n, simulate # inB(x1(i−1)&t,FB) conditional
on the data D. Numerically integrate (2) for one step &t starting at x1((i−1)&t), return x1(i&t),
and continue with the next i . For complex multibody systems, it might be difficult to estimate the
bound FB . We therefore advance the simulation until we arrive within ! of the edge of the currently
simulated subspace. Then we resample and restart the simulation. The caveat is that the control
points—the points where the simulation is restarted—are no longer equally distributed in time. We
note, however, that the justification for (27) can be immediately adapted to accommodate that case.

Based on the previous discussion, a particularly attractive option is the use of a compact kernel.
This results in a sparse prior Gaussian process covariance matrix, which has favorable consequences
in the computation of the gradient in the training phase (13). It can also be leveraged in the
conditional simulation phase, but this has not been exploited here, since, pursuant to (27), the
sample size in the incremental simulation is much smaller than in Section 3.

A family of piecewise polynomial covariance functions with compact support that guarantee
positive definiteness in RD is suggested in [17, Chapter 4.2]. In the R2 case relevant herein,

k(r)=






(
1− r

(

) j+1
, r<(

0, r>(
(28)

where r =
√
x21 +x22 ,( defines the compact threshold (and is the direct source of !) and j quantifies

the function smoothness. For the convergence study carried out in Section 5 a compact kernel was
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Figure 4. Exponential vs compact kernels.

Figure 5. Pictorial representation of IGPA.

needed that approximated the baseline '-exponential correlation function well. Some trial and error
was used to select the hyperparameters for both covariance functions to achieve likeness. If '=2
in (7), and j =3 in (28), then likeness is achieved when (=5∗(x1 =5∗(x2 . Two like kernels are
shown in Figure 4, which displays the scenario (x1 =(x2 =2.5 and (=12.5. Note that the compact
kernel decays to zero at r =(.

Finally, IGPA, the second sampling procedure proposed, is implemented as follows. Imagine a
vehicle traveling in uncertain space. For the vehicle model considered, values of # are needed only
at the tire/terrain points of contact; thus, only data values as stipulated by (27) within FB need to be
used for training the interpolation. Since it would be computationally expensive to interpolate with
Gaussian processes for each integration step, we instead interpolate on subdomains large enough to
accommodate the simulation for several time steps; this strategy is presented pictorially in Figure 5.
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As previously pointed out, an a priori bound on FB in (27) is hard to obtain. We thus resample
as soon as the trajectory comes within ! of the edge of the simulated domain. An ! value of about
1
8 of the diameter of the kernel support was found to provide a good bound. Note also that the
proof (27) was carried out with the end trajectory point at the center of the new sampling domain.
The only change needed for the proof to hold in general is that the trajectory stay for &t inside
of the newly sampled domain. A heuristic was used whereby the new sampling domain had the
starting state at about ! of the boundary with the velocity vector pointing inside, which was found
to still capture the distribution correctly for the considered vehicle simulation.

5. NUMERICAL RESULTS

The numerical results presented validate the methodologies introduced in this paper in conjunction
with the non-linear vehicle model discussed in Section 1.1. In principle, any statistics that draws on
states associated with a system described by an initial value problem such as (3) can be solved using
these methods. The statistics reported herein are for the final time tN as well as whole trajectory
statistics, x(t); t ∈ [t0, tN ]. The convergence studies illustrate the accuracy of the methods, while the
effort vs problem-size plots demonstrate the gains obtained in terms of runtime and storage. Some
validation results are carried on the Gaussian process %(x) alone, without dynamics simulation,
in order to validate the equivalence of the sampling methods.

5.1. Validation of hyperparameter estimation

A leave-one-out cross-validation procedure was used to verify the hyperparameter estimation
method. To start, data were generated from known hyperparameters and then divided into 10
distinct training and testing sets. The training sets were used to estimate the hyperparameters, and
the resulting posteriors were compared with the test set data. Since the test data %∼N(%̂,$),
where %̂ and $ are the mean and covariance matrix predicted from the training set, for each test,
the expected behavior of the prediction method was demonstrated by confirming that

(%−%̂)T$−1(%−%̂)∼N(n,
√
2n) (29)

This is the case since v=$−1/2(%−%̂)∼N(0, I )∈Rn , and therefore vTv∼.2n . Equation (29) then
follows based on the central limit theorem, where n is the sample size.

The estimation stage was verified using two different sets of hyperparameters. For each hyper-
parameter test there were 10 cross-validations, generating 10 Z -scores. The resulting CDFs for the
Z -scores are plotted against the expected CDF (given infinite cross-validation tests) in Figure 6
to qualitatively validate the results of the estimation stage.

5.2. Validation of the spectral approach

For the spectral approach leading to the PFS method, we investigate only the sampling of #(x) itself
and not the multibody dynamics simulation. Once sample surfaces consistent with the Gaussian
process prior are obtained, simulations can be done by virtually any engineering package followed
by postprocessing of the sampling trajectories. Such an approach was followed in [18, 25], where
three-dimensional non-linear dynamics of two vehicle models was simulated in the commercial
multibody dynamics package ADAMS [26]. The contribution of this work is in the sampling
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Figure 6. Cross-validation CDF comparison: (a) Stationary data: '=4; (x =(y =1.5; a0=1, a1=a2=0
and (b) non-stationary '=4; (x =(y =1.5; a0=3, a1=a2=0.1.

Table I. Verification of covariance matrix structure.

Iteration ‖K11−K22‖ '(K22) '(K12)

1 0 0.0003e−10 0.0001e−10
2 0 0.0027e−10 0.0010e−10
3 0 0.0079e−10 0.0036e−10
4 0 0.0275e−10 0.0466e−10
5 0 0.1943e−10 0.1351e−10
6 0 0.4960e−10 0.7803e−10

efficiency accompanied by the proof of the fact that the method is consistent with the state prior.
This part will be validated by numerical examples below.

5.2.1. Validation of diagonalization and diagonal equivalence. To demonstrate the diagonalization
property (23) numerically, a diagonalization-by-FFT error operator ' is defined by using the
MATLAB diag function convention:

'(K )=‖Q′KQ−diag(diag(Q′KQ))‖ (30)

As a first check, at each iteration the priors K11 and K22 should be equal because of the
PFS strategy; the nonhomogeneity of the data is not factored in until the posterior. Results in
Table I confirm this (see the ‖K11−K22‖ column). Second, the diagonalizable-by-FFT property
of K11,K22, and K12 is confirmed by results reported in last two columns.

To leverage the operations in the frequency domain, the FFT diagonal must be mapped without
producing the unitary matrix Q. This is accomplished by using the explicit formula for the diagonal
entries in the FFT basis, (23). An operator % is used, where

%(Ka)=‖Q′KaQ−Da‖, a=22,12,W (31)
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Table II. Verification of equivalence of directly diagonalized matrices.

Iteration %(K11) %(K22) %(K12)

1 0.0133e−13 0.0133e−13 0.0022e−13
2 0.0178e−13 0.0178e−13 0.0266e−13
3 0.0155e−13 0.0155e−13 0.0355e−13
4 0.0355e−13 0.0355e−13 0.0375e−13
5 0.2842e−13 0.2842e−13 0.0711e−13
6 0.3553e−13 0.3553e−13 0.4263e−13
7 0.5684e−12 0.5684e−12 0.5969e−12

Figure 7. Comparison of PFS-derived covariance matrix convergence and Cholesky-derived covariance
matrix convergence: (a) Stationary, high-frequency data: '=4; (x =(y =1; a0=a1=a2=0 and (b)

non-stationary, low-frequency data '=4; (x =(y =3; a0=a1=a2=0.1.

to show in Table II the equivalence of the directly and indirectly derived diagonals for different
iterations. Specifically, the table compares the directly and indirectly diagonalized matrices, using
(31), to demonstrate their equivalence for seven-fold iterations.

5.2.2. Convergence study of spectral approach. To verify accuracy, the mean vector and covariance
matrix computed from the sampled data generated by PFS are compared with the mean and covari-
ance posteriors computed with traditional methods. In the latter case, all samples are computed at
once. The plots in Figure 7 show the normalized error of computed posterior covariance matrices
(compared with a Cholesky-derived covariance matrix derived with 1000 samples) as a function of
samples, k. Mathematically, the dependent quantity is ‖$1000−$k‖ where the subscript represents
sample size. Both methods converge at an approximate rate of 1/

√
N . The plots in Figure 8 show

the normalized error of computed mean vectors (compared with a Cholesky-derived mean vector
derived with 1000 samples) as a function of samples, k. Mathematically, the dependent quantity
is ‖m1000−mk‖. Again, both methods converge at an approximate rate of 1/

√
N .

Copyright 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:537–564
DOI: 10.1002/nme



EFFICIENT SAMPLING OF SPATIAL UNCERTAINTY 555

Figure 8. Comparison of PFS-derived mean vector convergence
and Cholesky-derived mean vector convergence: (a) Non-stationary,
low-frequency data: '=4; (x =(y =3; a0=0, a1=a2=0.5 and (b)
stationary, high-frequency data '=4; (x =(y =1; a0=1, a1=a2=0.

5.3. Dynamic simulation

In vehicle simulation, as the tire rolls over terrain, tire/road interface information is needed not
only at a discrete set of locations (the nodes of a lattice, for instance), but at an infinite number of
locations. Starting with information at a very limited number of points, sample road realizations
can be generated on a fine grid. An additional interpolation step is needed to generate information
at offgrid locations. In this context, spline interpolation has been used in this work to provide
tire/road friction coefficient information at offgrid locations.

Two friction coefficient realizations are shown in Figure 9. In both, Gaussian processes with PFS
are used to interpolate the data, refining the space 24-fold; one realization is shown for both data
sets. The first data set is stationary with high frequency, and the second is nonstationary with low
frequency. The resulting refinements were computed in approximately 0.4 s.

For each posterior sample, a cubic spline . is used to make predictions outside the N -node
grid. During the simulation, # at offgrid locations is interpolated allowing for the computation of
trajectory at all points at any time. Specifically, a Monte Carlo approach is used to produce the
multibody dynamics statistics through simulation.

At points away from the evaluation grid it is evident that the field function .(#) approximated
by splines no longer obeys the Gaussian process model; it is only an approximation of it. One can
show, however, that, in the limit of the evaluation grid spacing going to zero, the results of the
simulator converge to those that would be obtained if proper Gaussian process sampling had been
employed at the points required by the integration procedure. This convergence is due to the fact
that almost any sample . surface is smooth [17]. This convergence is illustrated numerically in [18].

5.3.1. Convergence study of IGPA. The incremental approach is validated numerically with a
convergence study of the vehicle trajectory x(t). It is expected that as the number of Monte Carlo
samples, N , increases, the trajectory statistics will converge regardless of which method is used
for interpolation. Figure 10 shows the [N =500] mean rotational velocity of the vehicle predicted
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Figure 9. Two scenarios and corresponding grid refinements: (a) '=4; (x =(y =3; a0=a1=a2=0 and
(b) '=4; (x =(y =5; a0=0, a1=a2=0.06.

with full grid interpolation and with IGPA interpolation. Figure 11 shows the relative error of
the IGPA predicted mean trajectory as compared with a [N =1000] mean rotational velocity
predicted with full grid interpolation, with N varying for IGPA. Figure 12(a) displays the norm
of the deviation vector; the error decays at a rate of 1/

√
N . Figure 12(b) shows the Kolmogorov–

Smirnov statistic (KSS) comparing the distribution of x(tN ) predicted by [N =1000] full grid
interpolation, with the trajectory distribution predicted by different N IGPA interpolation. With F as
the cumulative distribution function, KSS=max(F(x1)−F(x2)) is a minimum distance estimation
used to compare empirically derived cumulative distribution functions. For N sufficiently large,
the convergence rate for the KSS is 1/

√
N , which validates IGPA as a method that draws on (27).

5.4. Efficiency comparisons

The plot shown in Figure 13 demonstrates the computational efficiency of PFS in terms of runtime
and memory storage. PFS runtime starts lower and displays slower growth rate than that of
traditional methods conducted in the time domain. Moreover, PFS demonstrates reduced storage
requirements. Traditional methods implemented in MATLAB became impractical at eight iterations
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Figure 10. Mean rotational velocity predicted by full grid interpolation and IGPA interpolation: N =500.

Figure 11. Relative error of IGPA predicted mean rotational velocities, for varying N , as compared with
[N =1000] full grid interpolation prediction.

or approximately 9000 data points; this requires the storage of matrices with over 81×106 entries.
In the frequency domain, all information is contained in the FFT diagonal values, so the largest
storage is proportional to N instead of N 2.

The plot shown in Figure 14 demonstrates the significant computational gains achievable with
IGPA for long simulations. The simulation shown is that of a vehicle executing a constant radius
turn, with longer simulation times leading to larger problem spaces. Note that the times given
in this plot are for a single realization; the incremental method is less useful when Monte Carlo
simulation is applied because new realizations require completely fresh simulations as opposed to
a single Cholesky decomposition for all realizations as with traditional methods. As shown before,
the traditional method exhibits exponential growth in runtime and storage with increasing problem
size. It is shown that IGPA has a nearly linear growth in runtime with simulation time because of
the constant size of the posterior grids (the slope of this effort curve will be proportional to Monte
Carlo iterations).
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Figure 12. Convergence studies for IGPA predicted trajectories. [N =1000] Full grid interpolation
trajectory prediction is used for convergence target: (a) Convergence of trajectory error x̂(t)−x(t) and

(b) convergence of KSS at x(tN ).

Figure 13. FFT methodology for periodic data shown to be several orders faster than traditional method.
The traditional method reaches a memory limit after eight iterations.

6. CONCLUSIONS AND FUTURE WORK

The paper introduces two sampling methods, the periodic fold sampling (PFS) and the incremental
Gaussian process approach (IGPA), for handling spatial uncertainty in applied multibody dynamics
analysis. We prove that the methods correctly sample from the underlying Gaussian process. The
methods have both small computational costs and low memory requirements and as such are
suitable for large-space and fine-grid spatial uncertainty sampling.
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Figure 14. Runtime of traditional method and incremental approach shown as a function of simulation
time. The traditional method reaches a memory limit after 10 s in this simulation.

PFS (based on an FFT approach) is effective for interpolation and quantification of spatial
data provided on a lattice. With only a periodic data assumption, reflected in the covariance
matrix, and a conditional sampling regiment, PFS can do all the steps of traditional Gaussian
processes in the frequency domain. FFTs are employed to map between the frequency domain
and time domain when needed. Each step in this method—conditional sampling, hyperparameter
estimation, computation of posterior with noise incorporated, and multivariate Gaussian sampling—
is proven analytically and verified with numerical results. The computational effort to sample
a vector of length n is O(n logn) as opposed to O(n3) effort of the Cholesky-based approach.
PFS is limited by the fact that the data provided must reside on a regular grid. Nonetheless, the
approach can benefit uncertainty quantification in many areas of mechanical engineering with
infinite-dimensional uncertainty subspaces that have smooth realizations. These include contact
mechanics and boundary roughness effects in continuum and fluid dynamics.

In IGPA, the method dynamically updates small interpolation spaces in proximity of the loca-
tion of interest and thus avoids large grid interpolation completely. A Markov-chain justification
underlines the technique, whose implementation was discussed in detail and validated by means
of a compact kernel Gaussian process simulation.

The most important metric presented in this paper is the plot of effort vs number of samples.
It demonstrates that PFS leads to substantial efficiency gains, especially when the sample set is
large. Unless special precautions are taken, traditional methods implemented in MATLAB run
out of memory between 5000 and 10 000 sample points. PFS should be able handle up to 107

sample points. For IGPA, the Gaussian process interpolation effort is negligible compared with
the integration. This leads to a linear relationship between considered length of analysis and actual
simulation duration.

With only a few restrictions, the methods proposed combine the accuracy and reliability of
Gaussian processes with the speed achievable with spectral or white-noise methods. Furthermore,
the restrictions imposed are not severe, making PFS and/or IGPA usable in nearly all analysis
scenarios. Their speed and accuracy should prove relevant in industry applications such as vehicle
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dynamics and nuclear reactor simulation. Finally, this work opens up several research opportunities.
Since IGPA relies on a balance between grid size and the number of small grid interpolations
required over an entire simulation, an optimal subdomain selection is anticipated to further improve
the efficiency of IGPA. Research should also focus on the multivariate spatial uncertainty problem
both from ‘how’ and ‘how faster’ perspectives.

APPENDIX A

A proof is provided below that demonstrates that

p

((
S1

S2

)

|m1,$1

)

= p(S2|m2,$2)∗ p(S1|m3,$3) (A1)

for

p(x |m,$)=(2∗-)−n/2|$|−1/2 exp(− 1
2 (x−m)T$−1(x−m)) (A2)

where m is the posterior mean vector, $ is the posterior covariance matrix, x is the sample, and
n is the number of elements in the sample.

The expressions involved in this multiplicative equality lead to three parts of the proof: (1) the
scalar, (2) the determinant scalar, and (3) the exponential equalities. Separately, the proof below
will demonstrate that each of these equalities holds.

1. Numeric scalar equality:

(2-)−n1/2=(2-)−n2/2∗(2-)−n3/2

which follows from n1=n2+n3.
2. Determinant scalar equality:

We must prove that |$1|−1/2=|$2|−1/2|$3|−1/2, which can be shown to be identical to the
equality |$1|=|$2||$3|. From [17], the posteriors are

$1 = k(!1,!1)−k(!1,D)(k(D,D)+,2n I )
−1k(D,!1) (A3a)

$2 = k(S2, S2)−k(S2,!2)(k(!2,!2)+,2n ID)−1k(!2, S2) (A3b)

$3 = k(S1, S1)−k(S1,D)(k(D,D)+,2n I )
−1k(D, S1) (A3c)

where !1=
(
S1

S2

)

and !2=
(
D

S1

)

. Next, define

A =





k(D,D)+,2n I k(D, S1) k(D, S2)

k(S1,D) k(S1, S1) k(S1, S2)

k(S2,D) k(S2, S1) k(S2, S2)



 (A4)

B =
[
k(D,D)+,2n I k(D, S1)

k(S1,D) k(S1, S1)

]

(A5)

C = k(D,D)+,2n I (A6)
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Schur’s determinant formula states that

det

[
A11 A12

A21 A22

]

=det A11 ·det(A22−A21A
−1
11 A12) (A7)

When using the Schur formula while solving for one of the right-hand side terms, we call it
the inverse Schur formula. It then follows that

$1= |A|
|C | , $2= |A|

|B| , $3= |B|
|C | (A8)

Finally,

|A|
|C | = |A|

|B| ∗
|B|
|C |

|A|
|C | = |A|

|C |

(A9)

3. Exponent equality:
The following notation is introduced:

A= x1−m1=
(
Y1

Y2

)

−k(!1,D)k(D,D)−1YD (A10a)

B= $1 (A10b)

C= x2−m2=Y2−k(S2,!2)k(!2,!2)
−1

(
YD

Y1

)

(A10c)

D= $2 (A10d)

E= x3−m3=Y1−k(S1,D)k(SD, SD)−1YD (A10e)

F= $3 (A10f)

Note that boldface is used to distinguish from other variables previously used in this proof;
specifically, note the difference between D for data and D, and the difference between A for
the matrix in (A4) and A. For clarity, measurement noise is not included in this portion of
the proof which can be shown to hold even when ,n ,=0. With the notation introduced, the
hypothesis concerning the exponents in (A1) is

ATB−1A=CTD−1C+ETF−1E (A11)

Result (: Taking the inverse Schur with respect to B, yields

−ATB−1A=
det

[
B A

AT 0

]

detB
(A12)
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Taking the inverse Schur with respect to k(D,D) yields

detB= det A
detk(D,D)

(A13)

det

[
B A

AT 0

]

=

det





· · · YD

· A · Y1

· · · Y2

Y T
D Y T

1 Y T
2 Y T

Dk(D,D)−1YD





detk(D,D)
(A14)

In what follows an empty matrix block will be denoted by ·. From (A12) to (A14),

−ATB−1A=

det





· · · YD

· A · Y1

· · · Y2

Y T
D Y T

1 Y T
2 Y T

Dk(D,D)−1YD





det A
(A15)

Result /: Using the Schur complement of

(
D 0

0 F

)

CTD−1C+ETF−1E=−

det





D 0 C

0 F E

CT ET 0





detD ·detF (A16)

Result ': Taking the inverse Schur with respect to k(D, S1) of D and inverse Schur with
respect to k(D,D) of F yields

detD= det A
detk(!2,!2)

, detF= detk(!2,!2)

detk
(D,D), detD ·detF= det A

detk(D,D)
(A17)

Result ): First, execute a row transformation, then an inverse Schur with respect to k(D,D),
then a Schur with respect to k(!2,!2):

det





D 0 C

0 F E

CT ET 0



 = det





F 0 E

0 D C

ET CT 0
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= 1
detk(D,D)

·det





k(!2,!2) · 0 YD

· · 0 Y1

0 0 D C

Y T
D Y T

1 CT Y T
Dk(D,D)−1YD





= 1
detk(D,D)

·detk(!2,!2) ·
[
D C

CT (

]

(A18)

where

(=Y T
Dk(D,D)−1YD−

(
YD

Y1

)T

k(!2,!2)
−1

(
YD

Y1

)

(A19)

Taking the inverse Schur with respect to k(!2,!2),k(!2,!2) cancels out, to yield

det





D 0 C

0 F E

CT ET 0



=− 1
detk(D,D)

·det





· · · YD

· A · Y1

· · · Y2

Y T
D Y T

1 Y T
2 Y T

Dk(D,D)−1YD




(A20)

Combining Results (,/,', and ) proves (A11).
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